
www.manaraa.com

For Peer Review
 O

nly

Dynamic Resource Provisioning in Massively Multiplayer

Online Games

Journal: Transactions on Parallel and Distributed Systems

Manuscript ID: TPDS-2008-08-0321.R2

Manuscript Type: Regular

Keywords:

C.2.4.a Client/server < C.2.4 Distributed Systems < C.2
Communication/Networking and Information Technology < C

Computer Systems Organization, C.3.d Real-time and embedded
systems < C.3 Special-Purpose and Application-Based Systems < C
Computer Systems Organization, C.4.g Measurement, evaluation,
modeling, simulation of multiple-processor systems < C.4
Performance of Systems < C Computer Systems Organization,
I.6.8.f Gaming < I.6.8 Types of Simulation < I.6 Simulation,
Modeling, and Visualization < I Computing Methodologies, J.7.g
Real time < J.7 Computers in Other Systems < J Computer
Applications

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

www.manaraa.com

For Peer Review
 O

nly

1

Dynamic Resource Provisioning in Massively
Multiplayer Online Games

Vlad Nae, Alexandru Iosup, Radu Prodan

Abstract—Today’s Massively Multiplayer Online Games
(MMOGs) can include millions of concurrent players spread
across the world and interacting with each other within a
single session. Faced with high resource demand variability
and with misfit resource renting policies, the current industry
practice is to over-provision for each game tens of self-owned
data centres, making the market entry affordable only for big
companies. Focusing on the reduction of entry and operational
costs, we investigate a new dynamic resource provisioning method
for MMOG operation using external data centres as low-cost
resource providers. First, we identify in the various types of
player interaction a source of short-term load variability, which
complements the long-term load variability due to the size of
the player population. Then, we introduce a combined MMOG
processor, network, and memory load model that takes into
account both the player interaction type and the population
size. Our model is best used for estimating the MMOG re-
source demand dynamically, and thus for dynamic resource
provisioning based on the game world entity distribution. We
evaluate several classes of online predictors for MMOG entity
distribution and we propose and tune a neural network-based
predictor to deliver good accuracy consistently under real-time
performance constraints. We assess using trace-based simulation
the impact of the data centre policies on the quality of resource
provisioning. We find that the dynamic resource provisioning
can be much more efficient than its static alternative even when
the external data centres are busy, and that data centres with
policies unsuitable for MMOGs are penalised by our dynamic
resource provisioning method. Last, we present experimental
results showing the real-time parallelization and load balancing
of a real game prototype using data centre resources provisioned
using our method and show its advantage against a rudimentary
client threshold approach.

I. INTRODUCTION

Massively Multiplayer Online Games (MMOGs) have
emerged in the past decade as a new type of large-scale
distributed application characterized by a huge real-time vir-
tual world entertaining millions of players spread across the
world, e.g., World of Warcraft counts over 6 million unique
players daily. Invented and promoted by industry, MMOGs
have started to attract the interest of scientific researchers
as well, and challenges such as scalability, trust, and data
consistency have been identified by the distributed systems [1]
and database [2] communities. In this paper, we draw the
attention to the resource provisioning problem for MMOGs
as a new direction of research.

Today’s MMOG operate as client/server architectures, in
which the game server simulates a world via computing and

V. Nae and R. Prodan are with the University of Innsbruck; A. Iosup is with
the Delft University of Technology. Contact: Vlad@dps.uibk.ac.at,
Radu@dps.uibk.ac.at, and A.Iosup@tudelft.nl.

database operations, receives and processes commands from
the clients, and inter-operates with a billing and accounting
system [3], [4]. Based on the actions submitted by the players,
the game servers compute the global state of the game world
represented by the position and interactions of the entities, and
send appropriate real-time responses to the players containing
the new relevant state information. Depending on the game,
typical response times to ensure fluent play must be between
100 milliseconds in online First Person Shooter (FPS) action
games [5] and 1-2 seconds for Role-Playing Games (RPG)
A good game experience is critical in keeping the players
engaged, and has an immediate consequence on the income
of the MMOG operators. Failing to deliver timely simulation
updates leads to a degraded game experience and triggers
player departure and account closing [3], [4].

Today, a single computer is limited at around 500 simulta-
neous and persistent network connections, and databases can
manage the update of around 500 objects per second [2].
To support at the same time millions of active concurrent
players and many more other game entities, MMOG operators
need to install and operate a large dedicated multi-server
infrastructure [4], with hundreds to thousands of computers
hosting the distributed load of each game [3]. However, due
to the dynamic character of MMOGs, both on the short and
on the long term, the game providers have to over-provision
their infrastructure, which leads to a low and inefficient
resource utilisation and new providers finding it difficult to join
the market. For example, the operating infrastructure of the
Massively Multiplayer Online Role Playing Game (MMORPG)
World of Warcraft has over 10,000 computers [6].

In this paper, we propose a dynamic resource provisioning
solution that addresses the over-provisioning and the low-cost
market joining problems. We first present in Section II a realis-
tic model for an MMOG ecosystem that describes the resource
providers, the application, and their integration. Extending
previous work where resources were provided by a single
data centre [7], [8], in our model the MMOG resources are
provided by multiple geographically distributed data centres
with different lease policies. In contrast to previous models
of client/server Internet applications [7]–[10], which focus on
non-interacting user requests, our model is designed around
the notion of player interactions within the same application
instance. In Section III we demonstrate through the analysis of
traces from the popular MMOG RuneScape [11] that MMOGs
are more dynamic than previously believed [12] and that the
interaction between players is another major component of the
MMOG workload, complementing the player population size.

Motivated by the dynamic MMOG workloads, we propose

Page 1 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

2

a dynamic provisioning method in which the amount of re-
sources is first predicted, and then obtained dynamically from
data centres external to the MMOG operator. We devise in
Section IV an analytical MMOG load model for three types of
resources: processor, memory, and network. The model takes
into account both the player interaction type and the population
size. By feeding real-time measurements or online predictions
into the model, the game operators can dynamically estimate
the amount of resources needed for running their MMOG.
However, measuring the values of our proposed MMOG load
model’s parameters in real time may not be cost-efficient or
even feasible due to the system scale and geographical spread.
Moreover, player interactivity types are not uniform across the
whole game, making real-time prediction difficult to adapt to
MMOGs. We address these two problems in Section V by
proposing a novel strategy for applying predictions to MMOG
player interaction. We partition the simulated world into small
areas where real-time prediction proves to be accurate, and
aggregate the estimates to get an overall prediction. We evalu-
ate several classes of online predictors from moving averages
to simple neural networks, and find that the simple neural
networks have better accuracy than the studied alternatives
for a variety of MMOG workloads.

In Section VI we evaluate the efficiency and the Quality of
Service (QoS) of our dynamic resource provisioning. We show
through simulations that dynamic resource provisioning which
favours data centres that lease fewer resources at a time and
for shorter periods of time considerably reduces the MMOG
operation costs with a reasonable loss of QoS, even when
the centres are busy. We also find that when game operators
use our dynamic resource provisioning the data centres are
incentivised to offer MMOG-friendly hosting policies when
competition exists on the data centre market.

We designed, implemented, and deployed our methods
in the edutain@grid environment [13] targeting a platform
for scalability, QoS provisioning, and user-friendly business
models for real-time online interactive applications, with string
focus on MMOG. In Section VII we present a prototype
experiment of applying our integrated methods on a real online
game in a distributed infrastructure.

Finally, in comparison with the related work surveyed in
Section VIII, our study is the first to investigate the resource
provisioning for a multi-MMOG, multi-data centre ecosystem.

II. MMOG ECOSYSTEM MODEL

In this section we introduce a model and platform for an
MMOG ecosystem in which a global network of data centres
host services that execute many MMOGs at the same time. Our
multi-MMOG and multi-data centre model extends previous
work, which focuses on either a single application (usually a
Web service) and/or a single data centre [9], [14], [15].

A. Application Model

MMOGs are large-scale simulations of persistent game
worlds comprising various objects or entities that we classify
in four categories: (1) avatars are in-game representation of
the players; (2) bots or non-player characters (NPC) are

mobile entities that have the ability to act independently; (3)
movable objects (such as boxes or guns) are passive entities
which can be manipulated but do not initiate interactions; and
(4) immutable entities or decor.

The mostly employed architectural model for MMOGs is
client/server [3], with game operators maintaining the servers
that simulate a distributed game world. The simulation consists
for every MMOG of an identical set of steps to be executed
each discrete game time unit (game tick), described in Sec-
tion IV-A. The clients dynamically connect to a joint game
session and interact with each other by sending play actions
such as movements, shootings, operations on game objects, or
chat. To ensure scalability and real-time response, an MMOG
session is distributed on multiple game servers, and each
player is mapped to an avatar on one of the servers, usually
to one in its closest proximity to minimise latencies. We call
the entities hosted by game server in a distributed session as
active entities (from the point of view of that server). The vast
majority of game servers follow a similar computational model
implementing an infinite loop, where in each loop iteration
(also called tick) there are certain steps to be performed: (i)
processing events coming from the connected clients and other
servers; (ii) processing the states of the active entities; and (iii)
broadcasting state update to the connected clients.

B. Game Session Parallelization

Today’s MMOGs use three main session parallelization
techniques to serve at the same time hundreds of thousands of
players: zoning, replication, and instancing. These techniques
use the combined capacity of a group of servers working in
parallel; in this sense, we use in this work the terms server and
server group interchangeably. We describe in the following
each of these techniques, in turn. In Section VII we present
experiments with a real game that uses all three techniques.

Spatial scaling of a game session is achieved through
a conventional parallelization technique called zoning [16],
based on similar data locality concepts as in scientific parallel
processing. Zoning partitions the game world into geograph-
ical areas to be handled independently by separate machines
(see Figure 1). Zones are not necessarily of same shape and
size, but should have an even load distribution that satisfies
the QoS requirements. Today, zoning is successfully employed
in slower-paced (compared to fast-paced FPS action games)
MMORPG, where the transition between zones can only hap-
pen through certain portals (e.g. special doors, teleportation,
accompanied on the screen by a load clock or some standard
animation video) and requires an important amount of time.
Typically, zones are started manually by the game operators
based on the current load, player demand, or new game world
and scenario developments.

The second technique called replication [17] targets par-
allelization of game sessions with a large density of players
located and interacting within each other’s area of interest (see
Figure 1). Such situations are typical to fast-paced FPS action
games in which players typically gather in certain hot-spot
action areas that overload the game servers that are no longer
capable of delivering state updates at the required rate. To

Page 2 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

3

Game Operator #2Game Operator #1

Hoster #1 Hoster #2

MMOG Load Prediction MMOG Load Prediction

Resource Allocation Resource Allocation

MMOG #1 MMOG #2
Active entity (player) Shadow entity (player) ServerLegend:

R
e

p
li

c
a

ti
o

n

Z
o

n
in

g

Fig. 1. The MMOG ecosystem architecture.

address this problem, replication defines a novel method of
distributing the load by replicating the same game zone on
several CPUs. Each replicated server computes the state for
a subset of entities called active entities, while the remaining
ones, called shadow entities (which are active in the other
participating servers), are synchronised across servers.

The third technique called instancing is a simplification
of replication which distributes the session load by starting
multiple parallel instances of the highly populated zones. The
instances are completely independent of each other, meaning
that two avatars from different instances will not see each
other, even if they are located at nearby coordinates.

C. Load Complexity Model

The load of a MMOG depends not only on the number of
active concurrent players, but also on the number and type of
their interactions (see Section III-D for empirical evidence).
The interaction type and count span a wide range depending
on the game design. The number of interactions between the
entities may be very low (e.g. for puzzle games where a player
interacts with the system after long periods of thinking), to low
(e.g. for MMORPGs where small groups of people interact
with a sparse environment), and to very high (e.g. for FPS
action games where many players test their reaction time in a
confined area).

Assuming the number of entities is n, the interaction
complexity may range from O(n) for games in which players
are mostly solitary or the game does not need to make many
state changes or compute complex interactions, to O(n2)
for games in which many players acting individually are
interacting, and to O(n3) for games in which groups of many
players are interacting. To reduce the computational load, most
MMOGs simulate and send updates only for world regions
representing the area of interest of each avatar [18]. When
using such techniques, the interaction complexity may become
O(n ⋅ log n) from O(n2), and O(n2 ⋅ log n) from O(n3).

The lack of responsiveness of an MMOG may also be
caused by high latency, independently from the game oper-
ator’s server and bandwidth capacity. However, depending on
the game design, MMOGs have different latency tolerance.
The latency tolerance has been investigated by previous re-
search [5], [19]; for example, for FPS action games laten-

cies above 100ms severely disrupt the gameplay, while for
MMORPGs any latency below 1.5s is tolerable.

D. Hosting Model

We consider the hosting platform as consisting of data
centres scattered around the world, where each centre pools
together resources that may serve several game operators
simultaneously (see Figure 1). For simplicity, we assume that
each data centre consists of a single computing resource,
which can be a shared or distributed memory parallel machine
owned by a hoster. The game operators submit requests to
the data centre by specifying the type, number, and dura-
tion for which the resources are desired. We consider four
resource types: CPU, memory, input from the external network
(ExtNet[in]), and output to the external network of a data
centre (ExtNet[out]); here, the external network connects the
data centre with the Internet.

Depending on the data centre’s service model (either best-
effort or advance reservation-based), resource requests are
queued or immediately fitted in the schedule, respectively.
Once the available resources are matched against the requests,
these resources are allocated to the game operators. From the
game operator’s point of view, we say that the resources have
been provisioned. We use from here on the terms resource
allocation and resource provisioning interchangeably. The allo-
cated resources are reserved for executing the MMOG servers
for the entire duration of the game operator’s request (task
preemption or migration are not supported).

Our hosting model considers the size and the duration of
the minimal resource allocation, which may be not only for
a resource as a whole (e.g. a server in Web data centres [14]
or a multi-processor node in a Grid system [20]), but also
for a fraction of that resource (e.g. a virtual machine running
on a physical node [10], or a channel of an optical network).
Similarly, the minimal duration for which a resource may be
allocated may be between a few seconds (servicing one user
request by a Web service) to several months (a typical value
for Web server hosting). We define the resource bulk as the
minimum number of resources that can be allocated for one
request, expressed as the multiple of a minimal resource size.
Similarly, we define the time bulk as the minimum duration
for which a resource allocation can be performed expressed as
multiple of a minimal time period. A data centre may choose
to allocate resources for MMOGs only in bulks under a space-
time hosting policy imposed by the hosters.

E. Complete Ecosystem Model

The MMOG ecosystem comprises multiple hosters and
multiple game operators, where each hoster may set a different
space-time policy for its resources. The game operators handle
simultaneously MMOGs of different genres and designs with
different interactivity types and counts, and with different
latency tolerance. The relative success of each game is charac-
terised by the number of registered players. Figure 2 displays
the number of MMORPG players over time for the USA and
European markets based on the survey of Woodcock [21] for
dates until June 2006, and on our own research afterwards. The

Page 3 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

4

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

N
u
m

b
e
r

o
f
P

la
y
e
rs

 [
M

ill
io

n
s
]

Date

The Realm Online
Ultima Online

Lineage
EverQuest

Asheron’s Call
Anarchy Online

World War II Online
Majestic

Dark Age of Camelot
Motor City Online

Tibia
RuneScape

Final Fantasy XI
Earth Beyond

Asheron’s Call 2
The Sims Online

There
A Tale in the Desert

EverQuest Online Adventures
Shadowbane

Mankind
Eve Online
PlanetSide

Toontown Online
Second Life

Star Wars Galaxies
Lineage II

Sphere
Puzzle Pirates

Horizons
Era of Eidolon

City of Heroes / Villains
Dofus

EverQuest II
World of Warcraft
The Matrix Online

Dungeons Dragons Online
Auto Assault

Guild Wars
All

Fig. 2. Number of MMORPG players over time.

chart shows that there are currently six games with more than
500 thousand players each. The total number of MMORPG
players is well approximated by the exponential trend � ⋅ e�x,
where � = 7 ⋅10−9 and � = 0.028 give a Pearson’s coefficient
of determination R2 = 0.974. Assuming the same rate of
growth, we can estimate over 60 million players by 2011 in
the US and EU markets alone. The large number of MMOG
players, for the whole ecosystem and for each game in part,
is an important motivation for our work.

The game operators make requests based on the load of their
game servers and the data centres respond with offers based on
their local time-space renting policy. The resource allocation is
realised by a request-offer matchmaking mechanism according
to three criteria that favour the game operator. First, the
number and the type of resources requested must match with
the offer, and when they do not match an offer that includes
at least the requested amounts is selected. Second, depending
on the game latency tolerance, the resources closest to the
request are preferred. Third, to deal with data centre hosting
policies, the finer grained resources with the shorter period of
reservation time are preferred.

III. MMOG WORKLOAD ANALYSIS

Previous work on MMOG workload characterisation fo-
cused on highly interactive games with few users playing
together [22], traced small to mid-sized MMOGs [12], [23], or
collected data from only one server from a large distributed
MMOG [24]. In contrast, our analysis focuses on all server
groups of one of the largest commercial MMOGs, for which
we analyse the workload at both server and network level
based on server location and user interactions.

A. RuneScape Traces

RuneScape [11], ranked second by number of players in the
US and European markets (see Figure 2), is not a traditional
MMORPG, but combines elements of RPG and FPS (and other
genres) in specific parts of the game world called minigames,
where player interaction follows different rules. Thus, various
levels of player interactivity coexist and the game load cannot

0.0 x 10
6

0.5 x 10
6

1.0 x 10
6

1.5 x 10
6

2.0 x 10
6

2.5 x 10
6

3.0 x 10
6

12-01
2007

12-08
2007

12-15
2007

12-22
2007

12-29
2007

01-05
2008

01-12
2008

01-19
2008

01-26
2008

S
im

u
lt
a
n
e
o
u
s
 o

n
lin

e
 u

s
e
rs

 (g
lo

b
a
l
v
ie

w
)

Date/Time

Number of players over time
10 December 2007
Unpopular decision

before

18 December 2007
New content

after

unpopular
changes

amended

15 January 2008
New content

2007 2008

Fig. 3. The global RuneScape active concurrent players.

be trivially computed, for example using the linear models
employed in [15]). We started monitoring and collecting traces
from the official RuneScape Web page [11] in August 2007.
The traces are sampled every two minutes and contain the
number of players over time for each server group used by
the game operators. In this work, we analyse the traces for a
period of over six months until March 2008.

B. Global Number of Players
The number of RuneScape players has surged over the past

two years, starting with the introduction of the minigames.
From 180,000 active players (i.e. players that played at least
once in the last month) at the beginning of 2005, the game is
estimated to have now over 5,000,000 active players from over
8,000,000 open accounts in 2007 [25], [26]. Our study of the
official list of top RuneScape players counted over 3,000,000
active players in September 2007. Since a player needs to be
efficiently active for about a month to become a top player,
we conclude that RuneScape converts into dedicated players
between 30% and 60% of the starting players.

Our study shows that the maximum global number of active
concurrent players for RuneScape is around 250,000. However,
this number is strongly driven by the mood of the player base.
Figure 3 depicts the number of active concurrent users for
RuneScape over a period of two months. A highly unpopular
decision issued on December 10, 2007 resulted in massive
account cancellations which dropped the number of active
concurrent players by over 30,000 units (a quarter of its
value) in less than one day. Under intense pressure, the game
operators agreed to amend the changes and the number of
active concurrent players raised again to 95% of the previous
value. On December 18, 2007 and January 15, 2008 the game
operators released new content, which caused an over 50%
surge of the number of active concurrent players after about
one week in each case.

This high MMOG variability in the number of active
and concurrent players determines a very dynamic resource
requirement, which means that static resource provisioning
would lead to significant over-provisioning that is a strong
motivation for our work.

Page 4 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

5

0 2000 4000 6000 8000 10000
0

1000

2000

Median load with max−min load range for region 0
Lo

ad
 (

nu
m

be
r

of
 u

se
rs

)

Time step

Median Maximum Minimum

0 2000 4000 6000 8000 10000
0

500

1000

Interquartile range of server group load for region 0 (40 different server groups)

IQ
R

 fo
r

lo
ad

Time step

200 400 600 800 1000 1200 1400
−1

−0.5

0

0.5

1
Load autocorrelation of different server groups for region 0 (40 different server groups)

A
C

F
 fo

r
lo

ad

Time lag

Fig. 4. RuneScape workload for region zero (Europe).

C. Patterns in the Regional Number of Players

Our RuneScape traces characterise a global population
spread across five geographical regions including Europe and
the US East and West Coasts. We present in this section the
analysis of the number of players that use the server groups of
region zero representing Europe. The input for this analysis is
a subset of two weeks (middle to end of August 2007) from
the original RuneScape traces aggregating over 11,000 data
samples, where each sample contains one load value for each
server in the region. The analysis of the other four regions, as
well as of the rest of the traces, yielded very similar results.
The top subplot of Figure 4 shows the minimum, the median,
and the maximum load measured in number of online users in
any server group in the region at each time step. The median
load shows a diurnal pattern and a strong load variation during
the peak hours when the median is about 50% higher than the
minimum. There are also some heavy fluctuations caused by
few sporadic and short-lived server group outages which fall
outside the scope of this analysis.

To characterise the load variability between different server
groups, the middle subplot depicts the load interquartile range
(IQR) over time, defined as the difference between the 75th

and 25th percentiles of a data set. Similarly to the median
load, the load variability has a diurnal cycle. Unlike the load
of e-business and Web servers [27], the median load shows
no weekend effects, e.g. the load does not differ significantly
between weekend and normal work days.

To establish the duration of the cycles observed in the top
and middle subplots, the bottom subplot displays the autocor-
relation function for each of the European server groups. We
see a significant peak at around 720 (720 samples * 2 minutes
per sample = 24 hours) and a strong negative peak at around
360 (12 hours), which shows again the diurnal pattern of the
load of most servers. However, the same subplot shows that
the load of 2 − 5% of the servers is always 95% except for
outages, which does not follow a diurnal pattern.

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450 500

C
D
F

[
%
]

Packet length [B]

Note: Truncated at 500B
Trace 0: non-crowded+creating content, packet length
Trace 1: non-crowded+fast paced, packet length
Trace 2: semi-crowded+p2p interaction, packet length
Trace 3: crowded+p2p interaction, packet length
Trace 4: new content+non-crowded, packet length
Trace 5a: new content+crowded, packet length
Trace 5b: new content+crowded, packet length
Trace 6: crowded+fast paced, packet length
Trace 7: new content+locks, packet length

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

C
D
F

[
%
]

Packet IAT [ms]

Note: Truncated at 600ms
Trace 0: non-crowded+creating content, IAT
Trace 1: non-crowded+fast paced, IAT (see T6)
Trace 2: semi-crowded+p2p interaction, IAT (see T3)
Trace 3: crowded+p2p interaction, IAT (see T2)
Trace 4: new content+non-crowded, IAT
Trace 5a: new content+crowded, IAT
Trace 5b: new content+crowded, IAT
Trace 6: crowded+fast paced, IAT (see T1)
Trace 7: new content+locks, IAT (see T1)

Fig. 5. The CDF of packet length (top) and the CDF of packet inter-arrival
time (bottom) for different levels of player interaction.

D. Player Interaction Influence on Server Load

A fundamental premise of our work is that MMOG work-
loads depend on the player interaction. We demonstrate in this
section that this is indeed the case. Using the tcpdump tool,
we collected eight RuneScape traces labelled T1, . . . , T8, and
analysed the packet size distribution and the inter-arrival time
(IAT) between consecutive packets. Each trace is collected
from a session of at least five minutes and at most one hour. To
ensure the independence of the measurements, the traces were
collected at different dates over a six month period, while the
traces T5a and T5b were collected from the same environment
at consecutive periods of time.

Figure 5 illustrates that the network load depends on the
number and type of player interaction. For traces T1 and T6
that involve a fast-paced game, the level of interaction (i.e.
crowded or non-crowded) does not increase the server load as
the players are very sensitive to delays. Thus, for fast-paced
games the server needs to send packets as often as possible
and including as much information as possible. For traces T2
(market) and T7 (new content) that involve direct player-to-
player interaction, the packet sizes are similar but their IAT
is very different. The statistical moments of the IAT of T7
are lower than those of T2, as for T2 the need for updates
is conditioned by players starting and agreeing to trades, with
more thinking time than for the player actions in T7. For the
trace T4 that involves group interaction, the packets need to
arrive more often (lower IAT than for other traces) and to
include information about more objects (higher packet size).

IV. MMOG LOAD MODELLING

We propose in this section an analytical model for the
load of MMOGs. Our model covers the three main types of
resources used by MMOGs: CPU, memory, and network.

Page 5 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

6

Let us consider N clients connected to a distributed game
session aggregating a total of H (parallel, cluster) machines
from different hosters. Let us further consider that the game
world is populated by BE moving bots or NPCs (entity
category (ii) in Section II-A). On each the machine, there are
only AE active entities and C clients connected.

A. CPU Load Model

For modelling the load of one machine in a distributed
session, we distinguish three basic time consuming activities
within one game tick: (1) the computation of the interaction
between pairs of entities (consumed time for each computa-
tion: ti); (2) the reception of event messages from each client
(tm); and (iii) the update of entity states received from/sent to
another machine (tu). In order to keep the complexity of the
model acceptable, we assume that NPC entities do not interact,
which is true for many MMOGs. We model the CPU time tM
spent for sending and receiving messages from a server to
each client (active avatars) as:

tM = C ⋅ tm.

The CPU time tU spent by the server for processing state
updates from the other machines is:

tU = (N − C) ⋅ tu + (BE −AE) ⋅ tu +AE ⋅ tu,

and the time tI spent by the server for computing the interac-
tions between the active entities is:

tI = I ⋅ ti,

where I is the total number of interactions involving the active
entities. Obviously, the computation of interactions that do not
involve active entities is allotted to other machines.

For quantifying the interactions between entities, we use a
generic function f (e1, e2) which has to be instantiated for
each interaction type introduced in Section II-C:

f (e1, e2) =

⎧⎨⎩
e1 + e2, for O (n) interaction;
e1 ⋅ log (e2) , for O (n ⋅ log (n)) interaction;
e1 ⋅ e2, for O

(
n2

)
interaction;

e21 ⋅ log (e2) , for O
(
n2 ⋅ log (n)

)
interaction;

e21 ⋅ e2, for O
(
n3

)
interaction.

where e1 and e2 are two classes of interacting entities.
Let IC denote the number of avatars interacting with any

other entities (either avatars or NPCs). Furthermore, we define
pci as the average number of interactions involving active
avatars entities expressed as a percentage of IC. Analogously,
we define pei as the average number of interactions involving
active NPCs expressed as a percentage of BE. The total num-
ber of interactions is composed of the number of interactions
between active avatars and the number of interactions between
active avatars and NPC entities:

I = pci ⋅ f (IC, IC) + pei ⋅ f (IC,BE) .

Consequently, the CPU time tI for processing the interactions
involving all active entities can be calculated as follows:

tI = (pci ⋅ f (IC, IC) + pei ⋅ f (IC,BE)) ⋅ ti.

Approximating the time for sending/receiving an event as
equal to the time for updating the state of one entity (tm = tu),
the total CPU time consumed in one tick becomes:

tC = (N +BE)⋅tu+(pci ⋅ f (IC, IC) + pei ⋅ f (IC,BE))⋅ti.

Furthermore, quantifying ti with regard to tu as ti = pui ⋅ tu,
where pui is the ratio between the time necessary for one
entity update and the time for computing one interaction (in
percentage), the CPU time consumed in one tick becomes:

tC = (N +BE + pui ⋅ pci ⋅ f (IC, IC) + pui ⋅ pei ⋅ f (IC,BE))⋅ti.

Finally, considering tSAT as the tick saturation threshold,
we can define the CPU load function:

LCPU =
tC

tSAT

=
N + BE + pui ⋅ pci ⋅ f (IC, IC) + pui ⋅ pei ⋅ f (IC,BE)

v
,

where v is the CPU speed expressed as an integer representing
the number of tu-long tasks the CPU is able to perform in a
tSAT -long time interval.

B. Memory Load Model

The memory model is less complex than the processor load
model, since all machines keep the entity state records for all
entities participating in the game session. First, we take into
account the game-dependent constants such as the amount of
memory mgame needed to run the actual game engine with no
game world loaded and no clients connected. Next, we define
mworld as the amount of memory used for the game world
being played. As for entity-related memory constants, let mcs

denote the amount of memory needed to store the state of one
avatar, and mes the amount of memory needed to store the
state of an NPC entity. The interaction between entities does
not have a significant impact on the memory load and we
ignore it. Aggregating all this data, the memory consumption
M on a machine taking part in a distributed session is:

M = N ⋅mcs +BE ⋅mes +mgame +mworld.

As a consequence, the final memory load function is:

LMEM =
M

Mmacℎine
=

N ⋅mcs +BE ⋅mes +mgame +mworld

Mmacℎine
,

where Mmacℎine represents the amount of memory available
on a machine.

C. Network Load Model

In terms of network consumption, we define the outgoing
network bandwidth usage for a machine running a server of a
distributed game session as follows:

Dout = C ⋅ dcout + (H − 1) ⋅ (C +AE) ⋅ dupdt,

where dcout represents the amount of data sent to a client and
dupdt the amount of data exchanged between machines for
updating a single entity state.

The incoming network bandwidth usage for a machine in a
distributed session is defined as:

Din = C ⋅ dcin + (N − C +BE −AE) ⋅ dupdt,

Page 6 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

7

where dcin is the amount of data received from a client.
Finally, we define an overall network load function as the

maximum between the incoming and outgoing loads, since the
network is congested once one of the two maxima is reached:

LNET = max

(
C ⋅ dcout + (H − 1) ⋅ (C +AE) ⋅ dupdt

Bout
,

C ⋅ dcin + (N − C +BE −AE) ⋅ dupdt
Bin

)
,

where Bin and Bout denote the input, respectively output
network bandwidths.

D. Complete Load Model

We integrate the presented models into a complete resource
load model for MMOGs, where the load of the entire system
is imposed by the maximum load of the individual resources:

L = max (LCPU , LMEM , LNET) .

To stress the generality of our approach, MMOG classes can
be defined using the set of constants involved in all the models
previously described:

MMOGclass = {(BE) , (mcs,mes,mgame,mworld) ,

(dcout, dcin, dupdt)} .

Note that BE is not MMOG-dependent, but rather game
world and play style (e.g. single versus team play)-dependent.
Nevertheless, we included it among the constants because we
can consider games running different game worlds and play
styles as belonging to different MMOG classes.

V. MMOG LOAD PREDICTION

In this section we introduce a MMOG load prediction solu-
tion comprising a load prediction strategy and a tuned neural
network-based predictor that offers good real-time prediction
accuracy for a variety of MMOG workloads. We also present
the evaluation of several classes of predictors leading to the
selection of the neural network-based predictor.

A. MMOG Load Prediction Strategy

We have shown in Section III that the load of MMOGs
is more dynamic than previously believed, mostly because
of the player interactions. Therefore, fast and accurate load
prediction algorithms are required to dynamically allocate
resources for MMOGs which, besides the entity count, also
consider the entity interaction. However, due to the different
play styles of the players logged in at different moments
of time, the number of interactions can vary greatly. Thus,
predicting the number of interactions for the whole game
in real-time leads to low accuracy. To address this problem,
our prediction strategy for MMOGs is to first partition the
game world into subareas, where the size of a subarea is
small enough to be characterised by the entity count and
interaction type (see Section II-C). Then, the entity count
for each subarea is used as input for the model described in
Section IV. We define the overall entity distribution as the set

of entity counts for each subarea. The overall MMOG load
prediction is obtained by using the entity distribution as input
to many instances of the load model.

The main problem to be solved for this strategy is finding
a predictor with high accuracy for a variety of MMOG
workloads and good performance. As the overall entity dis-
tribution is required for one overall MMOG load prediction,
the predictor needs to be able to deliver tens of thousands of
predictions per second. In the remainder of this section we
address the problem of finding such a predictor.

B. Predictor Families

Two options are available for quantitative predictions in
MMOGs: explanatory models and time series prediction.
While explanatory models can deliver good accuracy with
little computation, they are difficult to obtain for complex
applications such as MMOGs, and are tightly-coupled to the
application instance and sometimes to platform for which they
have been constructed. With MMOGs relying on frequent
and large updates to maintain interest among the players
(in Figure 3 we see a rate of one update per month), the
explanatory models quickly become unmaintainable. Thus, our
work is based on prediction algorithms that use historical
values to discover patterns in the historical data series, and
extrapolate these patterns into the future.

Many such prediction algorithms have already been pro-
posed [28]. Simple prediction algorithms like exponential
smoothing and variants thereof are computationally inexpen-
sive and can be applied in parallel on several data sets, but
their predictive power is limited. More elaborated prediction
algorithms like autoregressive (AR), integrated (I), moving
average (MA) models, and combinations thereof like ARMA
or ARIMA try to find the best prediction model for the
given data set. Although their predictive power is higher, such
methods are also more time consuming and resource intensive,
thus being ill suited for highly dynamic MMOGs.

C. Neural Network-based Prediction

As an alternative to other prediction algorithms, we in-
vestigated the use of neural networks [29] that provide a
robust approach to approximating real- or discrete-valued
target functions. Low complexity neural networks are capable
of approximating complex and noisy functions, provided that
good input preprocessing is performed. Our predictor uses one
separate neural network for each game subarea which receives
as input the entity count at equidistant past time intervals and
delivers as output the entity count at the next time step.

A downside of neural networks is that they require a long
offline training phase consisting of several sub-phases. First,
the data set collection phase is a long process in which the
game is observed by gathering entity count samples for all
subareas at equidistant time steps. The second training phase
uses most of the collected samples as training sets, and the re-
maining ones as test sets. The training phase runs for a number
of eras, until a convergence criterion is fulfilled. A training era
consists of three steps: (1) presenting all the training sets in
sequence to the network; (2) adjusting the network’s weights to

Page 7 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

8

better fit the expected output (the real entity count for the next
time step); and (3) testing the network’s prediction capability
with the different test sets. Separating the training from the
test sets is crucial for avoiding memorisation and ensures that
the network has enough generalisation potential for delivering
good results on new data sets.

D. Traces for Testing MMOG Predictors

To experiment and validate the neural network prediction,
we developed a distributed game simulator which realistically
emulates the behaviour of game players. The motivation for
using an emulator is twofold: (1) we do not have available
the exact coordinates of entities in the RunScape game world
(and we do not have access to the code or the documentation
of the RuneScape server either); and (2) through this emulator
we are able to give further evidence that the player interaction
determines the server load (see also Section III-D).

1) Emulator: We have designed a MMOG emulator which
simulated a virtual environment populated by avatars. The
environment consists of real maps from the popular FPS game
Counter Strike [30]. The avatars are driven by several Artificial
Intelligence profiles that match the four behavioural patterns
most encountered in MMOGs [3]: the achiever determines
the avatar to seek and interact with opponents; the socialiser
causes the avatar to act in a group together with its teammates;
the explorer leads the avatar for discovering uncharted zones
of the game world (not guaranteeing any interaction); and the
killer simulates a well-known tactic in FPS games to hide
and wait for the opponent (thus gaining a tactical advantage
through the element of surprise). To also account for the
mixed behaviour encountered in deployed MMOGs [3], each
entity has its own preferred profile, but can change the profiles
dynamically during the emulation.

2) Generated Traces: We used this emulator to generate
eight different data traces for a duration of one day each with
a sampling rate of two minutes, modelling four parameters
(see Table I): peak hours, peak load, overall dynamics, and
instantaneous dynamics. The peak hours correspond to the
periods with high player count in online gaming such as late
afternoons (see Section III). The peak load represents the
highest load observed in a MMOG which is a good measure
for its relative popularity. The overall dynamic represents the
variability of the entity interaction over a period of one day,
while the instantaneous dynamic indicates the same variability
over a period of two minutes. The eight data sets exhibit
three major types of signals: type I with high instantaneous
dynamics and medium overall dynamics (sets 2, 3, and 4);
type II with low instantaneous dynamics (sets 6, 7 and 8); and
type III with medium instantaneous dynamics (sets 1 and 5).

E. Prediction Results

In this section, we compare the neural network prediction
against other well-known fast prediction methods such as last
value, average, moving average, sliding window median, and
three levels of exponential smoothing. We used a well-tuned
Multilayer Perceptron with a [6, 3, 1] structure representing
the number of neurons on each layer, which delivered the

TABLE I
CONFIGURATION PARAMETERS OF THE TRACE DATA SIMULATION SETS.

Data Player behaviour [%] Peak hours Peak Overall Instantaneous
set AggressiveScoutTeam playerCamper modelling load dynamics dynamics

(17 h.) (2 min.)
Set 1 80% 10% 0% 10% No +++++ +++++ +++++
Set 2 60% 10% 0% 20% No +++++ +++++ +++++
Set 3 70% 20% 0% 10% No +++++ +++++ +++++
Set 4 70% 30% 0% 0% No +++++ +++++ +++++
Set 5 30% 40% 30% 0% Yes +++++ +++++ +++++
Set 6 10% 80% 10% 0% Yes +++++ +++++ +++++
Set 7 20% 40% 40% 0% Yes +++++ +++++ +++++
Set 8 20% 80% 0% 0% Yes +++++ +++++ +++++

0%

10%

20%

30%

40%

50%

60%

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

P
re

d
ic

ti
o
n
 e

rr
o
r

[%
]

Neural network Average Moving average
Last value Exp. smoothing 25% Exp. smoothing 50%
Exp. smoothing 75% Sliding window median

Fig. 6. Accuracy of seven prediction algorithms applied to MMOG data.

most accurate results in a series of offline network tuning
experiments [31]. The goal of our experiment is to minimise
the prediction error:

PE =

∑N
i=1

∣∣∣n(real)
i − n(pred)

i

∣∣∣∑N
i=1 n

(real)
i

,

where N is the total number of samples in the trace data
set, and n(real)

i and n(pred)
i are the real, respectively predicted

entity counts at time step i.
Each prediction method receives as input every trace data

set described in Table I, and outputs for each input set a
sample prediction. The results in Figure 6 show that, apart
from having lower prediction errors, the quality of our neural
network-based predictor is its ability to adapt to various types
of input signals. In contrast, other algorithms exhibit poor
performance for some types of signals (e.g. the average method
is the second most accurate for Type I signals, but performs
poorly for all Type II and for some Type III signals). Notably,
our neural network predictor was significantly better than the
others for the sets with high instantaneous dynamics (Types I
and III signals).

Figure 7 depicts the duration of one prediction on a Intel
Core Duo E6700 (2.66GHz) processor. Although the neural
network predictor is the slowest with an average prediction
duration of approximately seven microseconds, it is never-
theless fast enough and suitable to MMOGs. To justify this
statement, let us consider a RuneScape setup consisting of a
hoster managing 200 game servers, each one with an upper
client limit of 2, 000. Moreover, let us consider the worse
case scenario in which our predictor would use a number of
subareas equal to the number of players, and that all game
worlds are handling the maximum number of players (i.e.
250, 000 subareas in total, see Section III-B). The approximate
total prediction time using our proposed predictor would be
14 milliseconds per server, and 2.8 seconds per hoster consid-

Page 8 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

9

 0.001

 0.01

 0.1

 1

 10

 100

Neural Sliding window Average Exp. smoothing

T
im

e
[µ

s]

Prediction method

Min, Max, Median, 1st and 3rd quartiles

Fig. 7. Statistical properties of the duration of one prediction for four
prediction algorithms applied to MMOG data.

TABLE II
THE EXPERIMENTAL SPACE COVERAGE.

Section Resource PredictionUpdateHosting Latency Number of
provisioning algorithm models policiestolerance MMOGs

Section VI-Bstatic, dynamic all O(n2)optimal none one
Section VI-C dynamic Neural all optimal none one
Section VI-D dynamic Neural O(n2) all none one
Section VI-E dynamic Neural O(n2)optimal all one
Section VI-F dynamic Neural O(n2)optimal none several

ering a single threaded execution. From a realistic prediction
interval of two minutes, the prediction time would amount
approximately 2%, leaving the remaining 98% for resource
allocation and load balancing actions.

VI. MMOG RESOURCE PROVISIONING

In this section we present an evaluation of our MMOG
resource provisioning model described in Section II-E. As out-
lined in Table II, we cover an experimental space with six axes:
the provisioning mechanisms, the prediction algorithms, the
player interaction, the hosting policies, the latency tolerance,
and the multi-MMOG workloads.

A. Experimental Setup

1) Metrics: We evaluate each experiment by using three
metrics: resource over-allocation, resource under-allocation,
and number of significant under-allocation events.

The resource over-allocation characterises the percentage
of a resource (i.e. CPU, memory, network) that has been
allocated from the amount used for the seamless execution
of a MMOG session. We define the resource over-allocation
at time instance t as the cumulated over-allocation for all M
resources participating in the game session, where �m (t) is
the total allocated resource and �m (t) is the resource usage
(the generated load):

Ω (t) =

∑M
m=1 �m (t)∑M
m=1 �m (t)

⋅ 100[%].

The resource under-allocation characterises the percentage
of resources that have not been allocated from the amount
necessary for the seamless execution of the MMOG, but
considering that missing resources on one machine can be
hidden by over-allocating the resource on other machines.
We define resource under-allocation at time instance t as the
average difference between the allocated and used resource.
The min function limits the maximum under-allocation value
to at most zero and thus, an over-allocation at a certain time

does not reduce impact of an under-allocation at a different
time instance (that is, Ω (t) and Υ (t) are not correlated):

Υ (t) =

∑M
m=1 min (�m (t)− �m (t) , 0)

M
⋅ 100[%].

The number of significant under-allocation events indicates
the number of times the under-allocation causes game play
disruption over a long period of time. In this work, we consider
an under-allocation as being disruptive (and frustrate players
that may quit the game) if its absolute value is over 1% for a
period of time of at least two minutes.

Location Data Machines
Continent Country Centres (total)

Europe

Finland 2 8
Sweden 2 8
U.K. 2 20
Netherlands 2 15

North America

U.S. (West) 2 35
Canada (West) 1 15
U.S. (Central) 1 15
U.S. (East) 2 32
Canada (East) 1 10

Australia Australia 2 8

TABLE III
DATA CENTRE PHYSICAL

CHARACTERISTICS.

2) Environment: We
performed experiments in
a simulated RuneScape-
like environment. The
input workload consisted
of the first two weeks
from the RuneScape
trace data analysed
in Section III which,
with the metrics being
evaluated every two
minutes, gives over
10,000 metric samples for
each simulation, ensuring
statistical soundness. The data centres are located on four
continents and seven countries, as depicted in Table III. Each
machine in the specified setup is capable of handling at least
one game server at full load (e.g., 2, 000 simultaneous clients
for RuneScape). The data centres were configured to use
different hosting policies, where each policy describes one
time and one resource bulk for each type of resource (see
Section II-D). The measurement unit for the policy resources
is a generic “unit” which represents the requirement for the
respective resource in a fully loaded RuneScape game server
(e.g., one external outward network unit is equivalent to a
real bandwidth value of 3 MB/s – see also Figure 5).

HostingCPUMemory External net. Time
policy in o ut [minutes]
HP-1 0.25 n/a 6 0.33 360
HP-2 0.25 n/a 4 0.5 360
HP-3 0.22 2 n/a n/a 180
HP-4 0.28 2 n/a n/a 180
HP-5 0.37 2 n/a n/a 180
HP-6 0.56 2 n/a n/a 180
HP-7 1.11 2 n/a n/a 180
HP-8 0.37 2 n/a n/a 360
HP-9 0.37 2 n/a n/a 720
HP-10 0.37 2 n/a n/a 1440
HP-11 0.37 2 n/a n/a 2880

TABLE IV
HOSTING POLICIES.

In our simulation, the
game operators perform
a prediction of the game
load (that is, of the
number of players and
of the interactions per
zone) every two minutes
and request an appropri-
ate amount of resources
to the data centres. The
protocol how resources
are matched based on
their number, type, lo-
cation, and time in this
ecosystem was presented in Section II-E. We assume zero
overhead in resource allocation, provisioning, and setup from
data centres to game operators.

B. Prediction Impact

In this experiment, we evaluate the impact of the prediction
method on the provisioning process. We assign the HP-1 and

Page 9 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

10

TABLE V
DYNAMIC RESOURCE ALLOCATION RESULTS.

Predictor type Avg. Over-allocation [%] Avg. Under-allocation [%]
CPU ExtNet ExtNet CPU ExtNetExtNet∣Υ∣ > 1%

[in] [out] [in] [out] events
Neural network 25.90 995.27 66.04 -0.09 0 0 317

Average 32.411023.43 69.29 -12.84 0 -2.46 8123
Last value 25.11 989.10 65.36 -0.16 0 0 608

Moving average 24.92 992.06 65.69 -0.33 0 -0.03 1142
Sliding window 24.97 992.73 65.76 -0.41 0 -0.03 1423

Exponential smoothing24.76 977.85 64.11 -0.42 0 -0.03 1429

HP-2 hosting policies described in Table IV to the data centres
presented in Table III in a round-robin fashion. When two
data centres have the same location (column “Country” in
Table III), their hosting policies are set differently to HP-1,
respectively HP-2, and their machine size to half the number
of resources at that location (column “Machines” in Table III).

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00

C
um

m
ul

at
iv

e
un

de
ra

llo
ca

tio
n

Time

Sliding window
Exp. smoothing
Moving average

Last value
Neural

Fig. 8. Cumulative under-allocation events for
five predictors.

We first
compare the
performance of
our dynamic
provisioning
strategy using
one of the
six prediction
algorithms (see
Section V), as
presented in

Table V. For over-allocation, we observe two performance
classes: the poor performance class with one member (the
average predictor), and the normal performance class with
the other five predictors as members. The reason for the big
over-allocations for the external network bandwidth is that the
two utilised policies were not well fitted to the input workload
(i.e,. the policies in Table IV included too much external
network bandwidth relative to the CPU). We will show in
Section VI-E that the resources from data centres with such
policies are not used when other suitable alternatives exist.

 0

 100

 200

 300

 400

 500

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00OO

08/26
00:00

08/28
00:00

O
ve

r-
al

lo
ca

tio
n

(Ω
) [

%
]

Time

Static allocation
Dynamic allocation

Fig. 9. Static versus dynamic resource over-
allocation.

We further rank
the five predictors
from the normal
performance class
using the under-
allocation metric.
First, only the neu-
ral network and
the last value pre-
dictors lead to no

under-allocation of the external network bandwidth, in addition
to leading to the lowest CPU under-allocation. Figure 8 depicts
the cumulative number of significant under-allocation events
over time for the five predictors with a normal over-allocation
value, which shows that the neural network predictor exhibits
the lowest number and the most stable evolution. We conclude
that our novel neural network predictor enables the best
resource provisioning, followed by the last value predictor
which confirms our results from Section V-E.

Figure 9 comparatively displays the resource over-allocation
resulted from the use of static, respectively dynamic provision-

TABLE VI
STATIC VERSUS DYNAMIC PROVISIONING FOR VARIOUS INTERACTIONS.

Interaction type Static provisioning Dynamic provisioning
Over-allocation Over-allocationUnder-allocation∣Υ∣ > 1%

[%] [%] [%] events
O (n) 55.71 8.47 0 1

O (n ⋅ log (n)) 71.86 16.07 -0.024 22
O

(
n2

)
146.03 27.77 -0.066 103

O
(
n2 ⋅ log (n)

)
180.60 36.26 -0.096 191

O
(
n3

)
242.04 54.62 -0.130 304

ing strategy (using the neural network predictor) for the same
workload. As expected, the dynamic provisioning of resources
achieves better results, its average over-allocation being around
25%, compared to 250% for the static allocation. The over-
allocation for dynamic provisioning is not the outcome of
unreliable predictions and can be lowered if the data centres
policies are more favourable. In this experiment, the dealloca-
tion of resources was only allowed at least six hours after the
start of the allocation (column “Time” in Table IV).

C. Player Interaction Impact

In this section we study the impact of player interaction on
the dynamic provisioning using the neural network predictor.

Figure 10 shows the resource over- and under-allocation
over time for the O(n), O(n ⋅ log n), O(n2), O(n2 ⋅ log n),
and O(n3) MMOG update models described in Section II-A,
for dynamic resource provisioning. We observe that the higher
the complexity of the update model is, the greater the fluctu-
ations in resource over-allocation are. At the same time, the
significant under-allocation events become more frequent as
the complexity of the update model increases. This is further
confirmed by Figure 11 which depicts the cumulative number
of significant under-allocation events over time, at the end
of the two simulation weeks this number being significantly
higher for O(n3) than for O(n).

 0

 50

 100

 150

 200

 250

 300

 350

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00C

um
m

ul
at

iv
e

un
de

ra
llo

ca
tio

n

Time

O(n3)
O(n2 x log(n))

O(n2)
O(n x log(n))

O(n)

Fig. 11. Cumulative under-allocation events.

Table VI
compares the
average static and
dynamic resource
provisioning
mechanisms for
various interaction
types. The static
provisioning has
five to seven times
higher resource over-allocation than the dynamic one, but no
under-allocation events. However, the number of significant
under-allocation events over the whole simulated period
remains below 3% for dynamic provisioning (at most 30
samples from over 10,000 samples used in the simulation).
When even this low occurrence cannot be tolerated, a
mechanism that increases the over-allocation shall be used.

D. Data Centre Hosting Policy Impact

We further evaluate the influence of the hosting policies
on the dynamic resource provisioning, where each hosting
policy expresses the sizes of the resource and of the time

Page 10 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

11

-100

-50

 0

 50

 100

 150

 200

 250

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00

O
ve

r-
(Ω

)/
U

nd
er

-a
llo

ca
tio

n(
Υ

)
[%

]

Time

O(n)

Over-allocation
Under-allocation

-100

-50

 0

 50

 100

 150

 200

 250

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00

O
ve

r-
(Ω

)/
U

nd
er

-a
llo

ca
tio

n(
Υ

)
[%

]

Time

O(n2)

Over-allocation
Under-allocation

-100

-50

 0

 50

 100

 150

 200

 250

08/18
00:00

08/20
00:00

08/22
00:00

08/24
00:00

08/26
00:00

08/28
00:00

O
ve

r-
(Ω

)/
U

nd
er

-a
llo

ca
tio

n(
Υ

)
[%

]

Time

O(n3)

Over-allocation
Under-allocation

Fig. 10. Over- and under-allocation for three update models.

bulks (see also Section II). When more resource types are
involved in the matchmaking process, there is a separate bulk
size for each resource type. Because the resource and the
time bulks have a combined influence on the provisioning of
resources, we conduct three separate experiments that use a
different resource hosting policy setup each. We first study
in Section VI-D1 the individual impact of the resource and
time bulk parameters on resource provisioning by varying one
of them and keeping the other constant. Then, we study the
combined effect of the resource and time bulks by using a
heterogeneous hosting policy setup in Section VI-D2.

1) The independent impact of the resource and time bulks:
We first estimate the impact of the CPU resource bulk variation
on the resource allocation performance by using five hosting
policies from HP-3 to HP-7 in Table IV. The resource bulks
for other resource types and the time bulk are kept constant.
The values selected for the CPU resource bulk, i.e. from 0.22
to 1.11, are not evenly distributed in the selected interval,
which reflects the real-life policies of data centres that try
to maximise their own resource usage and do not willingly
adapt to a specific MMOG’s resource requirements. We will
show in Section VI-E that in our MMOG ecosystem, the game
operators are not always forced to accept such conditions and
can penalise the data centres with unsuitable hosting policies
by not using their resources.

Experiment batch A in Table VII illustrates the influence of
the CPU resource bulk on the dynamic resource provisioning.
There is a visible tendency of higher over-allocation values
for bigger CPU resource bulks. Conversely, we can observe an
increase in significant under-allocation events as the CPUs are
offered with finer grained quantities. In conclusion, the finer
grained policies have the potential to increase the resource
provisioning efficiency, but also the risk of increasing the
number of significant under-allocation events. An optimal
value for the resource bulk granularity can be determined
with respect to the type of game serviced and its tolerance
to resource shortages.

To observe the impact of the time bulk, we vary it from 0.1
to 2.0 days while keeping the resource bulks constant. To this
end, we use the policies HP-5, and HP-8 to HP-11 described
in Table IV. The results of experiment batch B presented in
Table VII show that the efficiency of resource provisioning can
be significantly improved by using resources from the data
centres whose policies specify the shortest time bulks. The
increase of the average under-allocation is low if the time bulks

are set to realistic values, e.g. above one hour.
2) The combined impact of the resource and time bulks: To

study the combined impact of the resource and time bulks, we
aggregate the policies used in the previous two experiments
by taking all possible CPU-time bulk combinations (the other
resource bulks are identical for all involved policies). The
results from the experiment batch C depicted in Table VII
follow the same pattern as those obtained when varying
the time bulk in Section VI-D1 with higher under-allocation
values. We conclude that changing the time bulk has a higher
impact on the dynamic resource provisioning than changing
the resource bulk.

E. MMOG Latency Tolerance Impact

We now investigate the impact of the MMOG latency
tolerance on the quality of the dynamic resource provisioning.
We consider an ideal network behaviour, where the latency
between players and data centres is exclusively determined by
the physical distance between them. The higher the latency
tolerance of a MMOG, the further away the servers can be
located from the users, and the longer the list of data centres
from which resources can be dynamically provisioned is. We
show in this experiment that higher latency tolerance leads to
resources of the data centres with unsuitable hosting policies
being unused when other suitable alternatives exist.

We define five classes of maximal physical distance between
the players and the server locations, where in practice the
distance values would depend on the design of each MMOG:
(1) same location, when users must be handled by resources
at the same location; (2) very close, when resources can be
allocated within a radius of 1, 000 km from their users; (3)
close, within a radius of 2, 000 km; (4) far, within a radius of
4, 000 km; and (5) very far, when any server can serve any
user. We consider from the setup described in Table III only
the data centres located in the North American region, and
select from the workload only the requests that arrive at these
data centres. The hosting policies are coarse grained (i.e. with
large resource and time bulks) for the data centres located on
the US East Coast and become gradually finer grained for the
data centres located at the Central and West Coast locations.

We first consider a restricted workload in which only
the data centres from the US East Coast location receive
allocation requests from game operators. Figures 12 shows
the distribution of the allocated resources for various latency

Page 11 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

12

TABLE VII
EXPERIMENTAL RESULTS SHOWING THE IMPACT OF DIFFERENT RESOURCE AND TIME BULKS ON RESOURCE PROVISIONING.

Experiment batch Allocation time [hours] CPU resource [units] Over-allocation [%] Under-allocation [%] Under-allocation events

A: Time bulk variation

3 0.56 57.1 -0.028 78
6 0.56 60.78 -0.022 62
12 0.56 68.42 -0.020 54
24 0.56 77.79 -0.014 46
48 0.56 78.75 -0.008 23

B: Resource bulk variation

3 1.11 112.79 0 0
3 0.56 51.03 -0.048 90
3 0.37 57.1 -0.028 78
3 0.28 46.62 -0.064 137
3 0.22 38.95 -0.061 151
3 0.22 – 1.11 56.83 -0.047 127

C: Time bulk variation 6 0.22 – 1.11 59.86 -0.040 108

[average over all resource bulk sizes] 12 0.22 – 1.11 66.36 -0.029 91
24 0.22 – 1.11 79.93 -0.018 70
48 0.22 – 1.11 81.16 -0.011 41

US West (1)

US West (2)

Canada West

US Cent. (1)

US Cent. (2)

US East (1) US East (1) US East (1)

US East (2)

US East (2) US East (2)

Canada East Canada East

Canada East

0%

20%

40%

60%

80%

100%

Very close (d<1000km) Close (d<2000km) Far (d<4000km) Very far (d>4000km)

US West (1) US West (2) Canada West US Cent. (1) US Cent. (2) US East (1) US East (2) Canada East

Fig. 12. Resource allocation distribution for US East Coast resource requests
only and various latency tolerance values.

US West (1)

US West (2)

Canada West

Canada West
US Cent. (1)

US Cent. (2) US Cent (1,2)

US East (1)
US East (1) US East (1)

US East (1) US East (1)US East (2)

US East (2) US East (2)

Canada East Canada East

Canada East Canada East

0%

20%

40%

60%

80%

100%

Very close (d<1000km) Close (d<2000km) Far (d<4000km) Very far (d>4000km)

US West (1) US West (2) Canada West US Cent. (1) US Cent. (2) US East (1) US East (2) Canada East

Fig. 13. Resource allocation distribution for all North American resource
requests and various latency tolerance values.

tolerance values. As expected, because of the hosting policies
setup, the desirability for a data centre increases with its
distance from the US East Coast. For the maximal latency
tolerance, all requests are served on resources located at the
maximal distance from the US East Coast, i.e. on the data
centres from the US West Coast.

We now investigate the system behaviour in a realistic
situation under the combined workload of all North American
game operators. Figure 13 shows for this setup the distribution
of the allocated resources for various latency tolerance values.
Due to resource contention, the resource allocation follows
different patterns than in the optimal case. Figure 14 depicts
the resource allocation for all North American data centres,
which demonstrates that the US East Coast data centres with
the most unsuitable hosting policies are penalised by having
more unused resources, especially when the latency tolerance
admits far and very far maximal service distances. In addition,
the US East Coast requests are served under the best policies
even in a busy system.

TABLE VIII
AVERAGE OVER- AND UNDER-ALLOCATION FOR CONCURRENT MMOGS.

MMOG workload structure Over-allocation Under-allocation ∣Υ∣ > 1%A [%] B [%] C [%] [%] [%] events
0 0 100 35.98 -0.12 240
5 5 90 36.89 -0.12 231
10 10 80 36.50 -0.12 220
25 25 50 35.80 -0.10 213
33 33 33 33.84 -0.09 200
0 100 0 33.24 -0.09 216

100 0 0 19.79 -0.03 75

F. Impact of Servicing Multiple MMOGs

In this last experiment, we evaluate the dynamic provi-
sioning when servicing multiple types of MMOGs. We select
three MMOG types with different interaction complexities, as
defined in Section VI-C: MMOG A uses an O (n ⋅ log (n)),
MMOG B an O

(
n2
)
, and MMOG C an O

(
n2 ⋅ log (n)

)
interaction complexity. We run seven scenarios in which the
system has to handle resource requests for the three selected
MMOG types in different proportions. The workload structure
for each scenario is depicted in the “Workload structure” group
of columns from Table VIII.

When the workload is dominated by the more compute-
intensive B or C MMOGs, i.e. the first six rows in Table VIII,
the behaviour of dynamic provisioning is stable. The over-
allocation under a workload of only C MMOGs is less than
3% higher than under a workload of only B MMOGs. In
the seventh scenario, when the workload comprises only the
(less compute-intensive) A MMOGs, the dynamic resource
provisioning is significantly better than in the other scenarios.
We conclude that the quality of the dynamic provisioning
is determined by its biggest consumer. Under these circum-
stances, game operators of a different MMOG type (e.g. type
A) may find it more convenient to install their own infrastruc-
ture. As an alternative, we plan to investigate in future work
the impact of prioritizing resource requests according to the
MMOG interaction complexity.

VII. REAL-WORLD EXPERIMENT

We designed and implemented our MMOG ecosystem
within the edutain@grid project [13], aiming to provide a
platform for scalability, QoS provisioning, and user-friendly
business models for real-time online interactive applications,
with strong focus on MMOGs. edutain@grid is using as pilot

Page 12 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

13

0

5

10

15

20

US West (1) US West (2) Canada West US Cent. (1) US Cent. (2) US East (1) US East (2) Canada East

Far (d<4000km)

US East coast handled requests Other requests Free resources

0

5

10

15

20

US West (1) US West (2) Canada West US Cent. (1) US Cent. (2) US East (1) US East (2) Canada East

Very far (d>4000km)

US East coast handled requests Other requests Free resources

A
ll

o
ca

ti
o

n
[u

n
it

s]

Fig. 14. Far maximal allocation distance (left) and Very far maximal allocation distance (right) for all North American data centres and resource requests.

a commercial FPS game application called Hunter developed
by the Darkworks game development company with the head-
quarters in Paris, France. Parallelization of a game session
according to the zoning, mirroring, and instancing techniques
outlined in Section II-B is achieved by means of a generic
portable library called Real-Time Framework (RTF) [32].

We used in our experiments an FPS demonstrator appli-
cation that uses the open-source three-dimensional graphics
engine (OGRE – http://www.ogre3d.org/) for graphics and
sound, and the RTF library for game session parallelization.
The resource testbed consists of six servers provided by the
Amis telecommunication company located in Maribor, Slove-
nia and managed by one resource allocation service. The game
world consists of two adjacent zones, handled in the beginning
by two idle game servers. Clients connect to a game operator
located at the University of Innsbruck, which processes their
requests and arranges for the real-time connection the game
servers. To stress the servers, we generated waves of incoming
clients, implemented as non-player characters (or bots) and
modelled using the profiles described in Section V-D.

We ran three distributed sessions using different resource
provisioning methods. One session used our dynamic provi-
sioning method and the other two were managed using a fixed
threshold on the number of clients to create replication servers
and migrate clients. We set the replication thresholds to 40
and 50 clients, respectively. The goal of each session was to
accommodate a total of 190 clients which connect in four
waves (one minute apart from each other) of 80, 30, 30 and
50 clients with as little resource utilisation as possible, and
at the same time providing good QoS for the clients (i.e. the
least under-allocation).

Figure 15 shows three histograms with the total number
of clients, their zone distribution, the resource provisioning,
and load balancing measures taken for the distributed session
using our provisioning method. Figure 16 presents the under-
allocation events for the three distributed sessions. The average
under-allocation for the session managed by our dynamic re-
source provisioning method is 0.66%, and for the two sessions
utilising the client threshold is 0.86% and 8.69%, respectively.
Although the under-allocation for the client threshold method
with a threshold of 40 is relatively close to the one exhibited
by our method, there is a difference in the resource utilisation.
In this case, the client threshold method utilises a total of six
machines, whereas our provisioning method only needed five
machines to accommodate the same amount of clients. It is
possible to reduce the resource utilisation using a higher client
threshold, but the resource under-allocation events increase
drastically, as seen in the session with the client threshold of 50
which utilised only five machines and had an average under-

 0
 50

 100
 150
 200

 0 1 2 3 4 5 6 7 8 9

C
lie

nt
s Session

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
lie

nt
s

Replication event Load balancing event

Zone 0
Zone 0 [1st replica]

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9

C
lie

nt
s

Time [minutes]

Replication event
Load balancing event

Zone 1
Zone 1 [1st replica]

Zone 1 [2nd replica]

Fig. 15. Number of clients connected over time in a distributed session.

 0

 400

 800

 1200

 0 1 2 3 4 5 6 7 8 9

U
nd

er
al

lo
ca

tio
n

[%
]

Time [minutes]

Predictive method
Client threshold method [40]
Client threshold method [50]

Fig. 16. Under-allocation event comparison.

allocation of 8.69%. We conclude that our dynamic resource
provisioning method performs better than the rudimentary
client threshold-based method by providing a better service
to the clients while offering a good resource utilisation.

VIII. RELATED WORK

We have already reviewed in this article existing works
related to our MMOG ecosystem, workload, and prediction
models. We now turn our attention to the related work in
the area of resource provisioning and identify three main
directions from the resource provider’s perspective.

A. Data Centres

The case when resources from one data centre are shared
between multiple applications with statistical performance
guarantees has received much attention [9], [10], [14], [33],
[34]. In all these approaches the variables characterizing re-
quests (such as ”service time”) can be expressed independently
of the system state, for example with a random variable whose
behaviour is well characterized by a well-known statistical
distribution. However, an important component of the resource

Page 13 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

14

demands in the MMOG ecosystem is the interaction between
players, which makes the resource demands of MMOGs very
different from traditional web applications. To express the
interaction between concurrent system users, in our model a
request is dependent on transient system state parameters, such
as the number of active players and the location of players (see
Section IV-A).

From this body of related work, much attention has been
given to modelling single-tier web applications; with the no-
table difference in expressing interaction between concurrent
users, these models are similar to ours. The MUSE system [14]
allocates periodically a percentage of the resource capacity for
each service class such that a target utilisation is achieved at
the data centre level. An approach based on virtual machines,
as opposed to physical resources, has also been explored [33].
Resource demand profiles for business applications are con-
structed for various durations (e.g. hour, day, week) and
resources are allocated in advance to provide statistical perfor-
mance guarantees [9]. A similar approach based on application
profiles was proposed in [10]. Closest to our work, the benefit
of provisioning resources from single data centres has been
evaluated for databases and Web services [8]. Our work differs
from this approach in two significant aspects. First, MMOGs
have a different load model and their load in particular depends
also on the interaction between users. Second, we consider
multiple data centres to handle the different load patterns in
different geographical locations specific to MMOGs.

Recently, research has focused on multi-tier models of web
applications [8], [34]. They use probability distributions to
characterise resource demands, queueing theory to analyse
the system, and proactive and reactive resource provisioning;
the target environment is a single data centre. In contrast,
our approach seems less sophisticated, but it already fosters
emerging behaviour in a multi data centre MMOG ecosystem,
that is, the emergence of a complex system from the large
number of simple choices and interactions; for example,
we have shown in Section VI-E evidence that hosters have
incentives to offer MMOG-friendly hosting policies when the
market is competitive.

B. Grid Computing

The problem of dynamically allocating geographically dis-
tributed resources to applications has been a popular topic
in Grid computing research. Recent work investigates mecha-
nisms for resource allocation across single- and multi-cluster
Grids [20], [35]. They assess the performance of various
resource allocation mechanisms for typical Grid workloads
comprising batches of scientific and engineering jobs [36].
Unlike MMOGs, scientific Grid applications do not change
their resource requirements at runtime. Moreover, the Grid
resource allocation policies only allow for whole resources be
allocated at a time, while our work also considers the sub-
unitary allocation sizes specific to business data centres.

Closest to our work, the industrial game hosting platform
Butterfly.net Grid (now renamed the Emergent Platform) [37]
uses Grid technology to provide on-demand access to cluster
resources. Their hosting policy only considers multi-unitary

resource bulks and long time bulks; as such, this platform fits
well into our MMOG ecosystem as a typical large hoster.

C. Peer-to-Peer Computing

Peer-to-peer computing has emerged as a scalable and low-
cost technology, and as a potential alternative to traditional
on-demand resource provisioning. When employing peer-to-
peer technology, the game operators make use of the resources
of their clients instead of renting them from hosters. The
NPSNET project [38] uses a peer-to-peer approach in which
all the game computation is performed on client resources. The
SimMud [39] project uses a similar approach to NPSNET,
but also balances and optimises the use of resources. How-
ever, three problems have prevented so far the adoption of
peer-to-peer technology for MMOGs: the lack of appropriate
business models, the wide-spread attempts of cheating, and
the low availability of peers observed for other peer-to-peer
systems (such as the Gnutella and the BitTorrent file sharing
networks [40], [41]).

IX. CONCLUSION AND FUTURE WORK

We focused in this work on MMOGs as a new type of
large-scale distributed simulation with a growing user base of
tens to millions of players. To ensure that the user demand is
satisfied at all times, game operators resort to static resource
provisioning by building and maintaining computing platforms
of up to 10,000 machines located on several continents for a
single MMOG. In this paper we proposed a more efficient
alternative based on the dynamic resource provisioning and
management of data centre resources. Ours is the first thorough
investigation of an MMOG ecosystem, that is, of a multi-
MMOG, multi-data centre environment.

We showed in this work that the number and the type of
interactions between players, and between players and the
environment, are an important contributor to the game load.
To address it, we have introduced a new MMOG model
that focuses on the interaction count and type between game
entities, shown that interaction leads to much more dynamic
resource demands than previously believed, and proposed a
novel prediction algorithm based on neural networks that is
fast yet accurate; our algorithm performed significantly better
than the six time predictors also investigated in this work.
We have further investigated the performance of the resource
provisioning and management of data centre resources with a
large variety of scenarios that focus both on MMOG-specific
properties and on data centre hosting policies. Most impor-
tantly, we have shown that the static resource provisioning can
be on average from five up to ten times more inefficient than
dynamic allocation under the same conditions, and that the
game operators can penalise the data centres with unsuitable
hosting policies, by not using their resources. Last, we have
designed and implemented our methods on top of the platform
offered by the EU project edutain@grid, and presented an
experiment showing the real-time resource provisioning for
a real game prototype.

Page 14 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

www.manaraa.com

For Peer Review
 O

nly

15

REFERENCES

[1] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in peer-
to-peer gaming,” Computer Comm. Rev., vol. 37, no. 1, pp. 79–82, 2007.

[2] W. M. White, C. Koch, N. G. 0003, J. Gehrke, and A. J. Demers,
“Database research opportunities in computer games,” SIGMOD Record,
vol. 36, no. 3, pp. 7–13, 2007.

[3] R. Bartle, Designing Virtual Worlds. New Riders Games, 2003.
[4] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha, “On demand

platform for online games,” IBM Systems Journal, vol. 45, no. 1, pp.
7–20, 2006.

[5] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool, “The effects of loss and latency on user performance in unreal
tournament 2003,” in NETGAMES, 2004, pp. 144–151.

[6] B. Hack, M. Morhaime, J.-F. Grollemund, and N. Bradford, “Introduc-
tion to vivendi games,” Presentation. [Online] Available: http://www.
vivendi.com/, Jun 2006.

[7] R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. Vahdat, “Model-
based resource provisioning in a web service utility,” in USENIX
Symposium on Internet Technologies and Systems, 2003.

[8] B. Urgaonkar, P. J. Shenoy, A. Chandra, and P. Goyal, “Dynamic provi-
sioning of multi-tier internet applications,” in International Conference
on Autonomic Computing. IEEE CS Press, 2005, pp. 217–228.

[9] J. Rolia, X. Zhu, M. F. Arlitt, and A. Andrzejak, “Statistical service
assurances for applications in utility grid environments,” Perform. Eval.,
vol. 58, no. 2-3, pp. 319–339, 2004.

[10] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviri-
denko, and A. N. Tantawi, “Dynamic placement for clustered web
applications,” in WWW. ACM Press, 2006, pp. 595–604.

[11] Jagex, Ltd., “Runescape,” MMOG. [Online] Available: http://www.
runescape.com/, Nov 2007.

[12] K.-T. Chen, P. Huang, and C.-L. Lei, “Game traffic analysis: An mmorpg
perspective,” Computer Networks, vol. 50, no. 16, pp. 3002–3023, 2006.

[13] T. Fahringer, C. Anthes, A. Arragon, A. Lipaj, J. Müller-Iden, C. Rawl-
ings, R. Prodan, and M. Surridge, “The edutain@grid project,” in
GECON, ser. LNCS, vol. 4685. Springer, August 2007, pp. 182–187.

[14] M. Aron, P. Druschel, and W. Zwaenepoel, “Cluster reserves: a mech-
anism for resource management in cluster-based network servers,” in
SIGMETRICS, 2000, pp. 90–101.

[15] M. Ye and L. Cheng, “System-performance modeling for massively
multiplayer online role-playing games,” IBM Systems Journal, vol. 45,
no. 1, pp. 45–58, 2006.

[16] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee, “A scalable architecture
for supporting interactive games on the internet,” in 16th Workshop on
Parallel and Distributed Simulation, 2002, pp. 60–67.

[17] J. Mller-Iden and S. Gorlatch, “Rokkatan: scaling an RTS game design
to the massively multiplayer realm,” Computers in Entertainment, vol. 4,
no. 3, p. 11, 2006.

[18] A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang,
S. Seshan, and X. Zhuang, “Donnybrook: enabling large-scale, high-
speed, peer-to-peer games,” in SIGCOMM. ACM Press, 2008, pp.
389–400.

[19] M. Claypool, “The effect of latency on user performance in real-time
strategy games,” Computer Networks, vol. 49, no. 1, pp. 52–70, 2005.

[20] A. Iosup, D. Epema, T. Tannenbaum, M. Farrellee, and M. Livny, “Inter-
operating grids through delegated matchmaking,” in SC. ACM Press,
2007.

[21] B. S. Woodcock, “An analysis of mmog subscription growth,” Report,
21 Edition. [Online] Available: http://www.mmogchart.com, Jun 2006.
[Online]. Available: http://www.mmogchart.com

[22] W.-C. Feng, F. Chang, W.-C. Feng, and J. Walpole, “A traffic charac-
terization of popular on-line games,” IEEE/ACM Trans. Netw., vol. 13,
no. 3, pp. 488–500, 2005.

[23] W.-C. Feng, D. Brandt, and D. Saha, “A long-term study of a popular
MMORPG,” in NETGAMES. ACM Press, 2007, pp. 6–11.

[24] D. Pittman and C. Gauthier, “A measurement study of virtual populations
in massively multiplayer online games,” in NETGAMES. ACM Press,
2007, pp. 25–30.

[25] BBC News, Technology, “British gaming firm takes on the world,”
News Item. [Online] Available: http://news.bbc.co.uk/2/hi/technology/
7090490.stm, Nov 2007.

[26] The Screen Digest Group, “Western world MMOG market: 2006 review
and forecasts to 2011,” Research Report. [Online] Available: http://www.
screendigest.com/Reports, Mar 2007.

[27] D. A. Menascé, V. Almeida, R. H. Riedi, F. Ribeiro, R. C. Fonseca, and
W. M. Jr., “A hierarchical and multiscale approach to analyze e-business
workloads,” Perform. Eval., vol. 54, no. 1, pp. 33–57, 2003.

[28] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis,
Forecasting and Control. Prentice Hall, 1994.

[29] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
University Press, 1996.

[30] I. GameData, “Counter strike,” http://www.counter-strike.com.
[31] V. Nae, R. Prodan, and T. Fahringer, “Neural network-based load

prediction for highly dynamic distributed online games,” in Euro-Par.
Springer Verlag, 2008.

[32] F. Glinka, A. Ploss, J. Mller-Iden, and S. Gorlatch, “RTF: A real-
time framework for developing scalable multiplayer online games,” in
NetGames. ACM Press., 2007.

[33] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized resources
in utility computing environments,” in EuroSys. ACM Press, 2007, pp.
289–302.

[34] B. Urgaonkar, P. J. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” TAAS, vol. 3,
no. 1, 2008.

[35] M. Siddiqui, A. Villazón, and T. Fahringer, “Grid allocation and reserva-
tion - grid capacity planning with negotiation-based advance reservation
for optimized qos.” in ACM/IEEE Conference on High Performance
Networking and Computing (SuperComputing), 2006, p. 103.

[36] A. Iosup, C. Dumitrescu, D. H. Epema, H. Li, and L. Wolters, “How are
real grids used? The analysis of four grid traces and its implications.”
in GRID. IEEE CS Press, 2006, pp. 262–270.

[37] Gamebryo, “Butterfly Grid/Emergent Platform,” [Online] Available:
http://www.emergent.net/, Aug 2008.

[38] M. R. Macedonia, D. P. Brutzman, M. J. Zyda, D. R. Pratt, P. T. Barham,
J. Falby, and J. Locke, “NSPNET: A multiplayer 3D virtual environment
over the internet,” in SI3D’95, 1995, pp. 93–94.

[39] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for
massively multiplayer games,” in INFOCOM, 2004, pp. 96–107.

[40] M. Ripeanu, A. Iamnitchi, and I. T. Foster, “Mapping the gnutella
network,” IEEE Internet Computing, vol. 6, no. 1, pp. 50–57, 2002.

[41] J. Pouwelse, P. garbacki, D. Epema, and H. Sips, “The Bittorrent P2P
file-sharing system: Measurements and analysis,” in IPTPS, 2005.

Page 15 of 15

http://mc.manuscriptcentral.com/tpds-cs

Transactions on Parallel and Distributed Systems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

